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PREFACE
This month, we are going to talk about the following questions.

Q1

A lattice point is a point (x, y) in the plane, both of whose coordinates are

integers. It is easy to see that every lattice point can be surrounded by a

small circle which excludes all other lattice points from its interior. It is not

much harder to see that it is possible to draw a circle which has exactly two

lattice points in its interior, or exactly 3, or exactly 4, as shown in the picture

below

Do you think that for every positive integer n there is a circle in the plane

which contains exactly n lattice points in its interior? Justify your answer.

Q2
The set S contains some real numbers, according to the following three rules.

(i) 11 is in S.

(ii) If �� is in S, where
�
� is written in lowest terms (that is, a and b have

highest common factor 1), then �
2� is in S.

(iii) If �
�
and �

�
are in S, where they are written in lowest terms, then �+�

�+� is in

S.

These rules are exhaustive: if these rules do not imply that a number is in S,

then that number is not in S. Can you describe which numbers are in S? For

example, by (i), 11 is in S. By (ii), since
1
1 is in S,

1
2 is in S. Since both

1
1 and

1
2

are in S, (iii) tells us 23 is in S.
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Q3

Let P0 be an equilateral triangle of area 10. Each side of P0 is trisected into

three segments of equal length, and the corners of P0 are snipped off,

creating a new polygon (in fact, a hexagon) P1. What is the area of P1? Now

repeat the process to P1– i.e. trisect each side and snip off the corners – to

obtain a new polygon P2. What is the area of P2? Now repeat this process

infinitely to create an object P∞. What can you say about the shape P∞?

What is the area of P∞?

This is the admission question from 2024 PROMYS Program. If you have
other brilliant ideas, email to anmiciuangray@163.com for surprising
rewards!

mailto:anmiciuangray@163.com
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1
Some Auxiliary Results

Theory 4.1 There are infinite lines on a plane.

Lemma 4.2 Given two fixed points on a plane, if there is another point satisfying
that the distances between this point and each of two fixed points are the same,
then the point must be on the perpendicular bisector of the line with these two fixed
points as vertices.
Proof.

We can prove it through congruent triangles A and B.

Lemma 4.3 Given finite fixed points on a plane, we could find another point,
satisfying that the distances between this point and every fixed point are different.
Proof.
We firstly draw all the lines with arbitrary two fixed point as vertices, and then draw
the perpendicular bisectors of these lines. Then, based on Lemma 4.2, as long as
the point we found isn’t on any of these perpendicular bisectors, the distances
between this point and every fixed point are different.
According to Theory 4.1, there are infinite lines on a plane, meaning that we fail to
use finite lines to cover a plane. Thus, we do can find a point satisfying that the
distances between this point and every fixed point are different.

Theory 4.4 If a point is inside a circle with radius r, then the distance between the
point and the center of the circle must be less than r.
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Solution
Given the value of n, we can find the minimum value of even number m satisfying

m ≥ n.
we find a region like below.

Then, we just need to find a point inside the central square, satisfying that the
distances between this point and every fixed lattice point are different.
Based on Lemma 4.3, we are confident that this point exists.
Since the distances between this point and every fixed lattice point are different, if
we consider this point as the center of the circle, we can thus control the radius of
circle in order to make different numbers of lattice points inside the circle.
If we sort the lengths of distances between this point and every fixed lattice point in
ascending order, namely

r1, r2, r3, ⋯, rn, rn+1,⋯, rm2.
According to Theory 4.4, in order to make n lattice points inside the circle, we just
need to let the radius of the center r be

rn < r ≤ rn+1.
That be said, for every positive integer n, there is a circle in the plane which contains
exactly n lattice points in its interior.
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Afterword
The reason why we want to choose a point inside the central square is that,
otherwise, there might be other points which are inside the circle we find.

For example.

In the above example, we merely want to find a circle with 4 lattice points inside, but
we find a circle with a center inside the dashed square.
Although if we merely consider the 3×3 points(blue points), it seems like that we
successfully find what we want, if we consider the other points(red points), it points
out the fact that we fail to find the circle we want.

Thus, in order to avoid this situation, we must find the center inside the central
square.

But why let m ≥ n? Well, in fact, m no longer needs to be greater than or equal to n,
as long as using m×m points can avoid the aforementioned problem.

For example.

We want to find 60 lattice points inside a circle. But if we find this circle using 8×8
points, we will fail because if we merely consider this 8×8 points, some points(green
points) are outside the circle, whereas some points outside these 8×8 points(orange
points) are actually inside the circle.

This is because the distance from the center to the corner of the n×n points is too
far, so we should not plan to include these ‘far’ points into the circle.
Thus, by finding a circle inside the m×m points, there are just enough points on
single row or column, no to mention the number of points inside the circle with the
center inside the central square, whose diameter is m-1 ≤ r ≤ m, meaning that we
are sure that the aforementioned problem can be avoided.



济南外国语学校数学月报编写组

2.
Some Auxiliary Results

Lemma 5.1 All numbers in S can be expressed as results of finite times of operation
relating to 1

1 and
1
2.

Proof.
Understandably, because that how we get a number pq, if it exists in S.

Lemma 5.2 All numbers in S are smaller than or equal to 1, and only 11 and
2
2 are

equal to 1.
Proof.
Except for 11 and

2
2, based on Lemma 5.1, other numbers in S can be expressed as

results of the finite times of operation relating to 11 and
1
2, and the operation

consisting at least one 12, making the final results smaller than 1.

Lemma 5.3 All numbers in S are greater than or equal to 12, and only 12 is equal to
1
2.

Proof.
Except for 12, based on Lemma 5.1, other numbers in S can be expressed as results
of the finite times of operation relating to 11 and

1
2, and the operation consisting at

least one 11, making the final results greater than 12.

Lemma 5.4
gcf(a,a-1) = 1

Proof.
This can be, to some extent, proved by Euclidean Algorithm.

Lemma 5.5
gcf(a,2a-1) = 1

Proof.

Assume
gcf(a,2a-1) = m,

where m≠1.
Then

a ≡ 0 (mod m),
But

2a - 1 ≡ -1 (mod m).
So by contradiction, gcf(a,2a-1) = 1.

⋯
⋯⋯
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Solution
When solving a problem which involves a plenty of different terms, it is always
helpful to find a few terms in advance:

graph 5.1
Here, we have two ways to go: to find out which numbers are in S, which you will
see in the afterword, or to find out which numbers are not in S.
Since I fail to use the former method to find out the answer, I’ll begin with the latter.

We may notice that, after several trials, the numbers in S are smaller than or equal to
1 and greater than or equal to 12, which can be proven by Lemma 5.2 and Lemma
5.3. In this way, we are sure that all numbers are in the range of [12,1](only

1
2 =

1
2 and

1
1,

2
2 = 1).
So now, we just need to prove that all numbers, which are in the range of [12,1](only

1
2

= 1
2 and

1
1,
2
2 = 1), are in S.

After trials, we can find out the general pattern of it:
①For numbers ab where a = 2b - 1, based on Lemma 5.5, we can get them through
the operations between the operations of a−1

b−2 and
1
2.

②For most of the numbers ab in the range of [
1
2,1](only

1
2 =

1
2 and

1
1,
2
2 = 1), where

gcf(a-1,b-1) = 1, we can get them through the operations of a−1b−1 and
1
1.

③For some numbers ab in the range of [
1
2,1](only

1
2 =

1
2 and

1
1,
2
2 = 1), where gcf(a-1,b-1)

≠ 1, based on Lemma 5.4, we can get them through the operations of p
'

p and
q−1
q ,

where p is the possible minimum prime and p' and q are both integers.

For example.
①4
7 =

3 + 1
5 + 2.

②6
7 =

5 + 1
6 + 1.

③5
7 =

2 + 3
3 + 4.

In conclusion, all fractions that are in the range of [12,1](only
1
2 =

1
2 and

1
1,
2
2 = 1) are in

S.

denominator numbers
1 1

1.

2 1
2,
2
2.

3 2
3.

4 3
4.

5 3
5,
4
5.

⋯
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Afterword
Piece of Process Using Method 2
Actually when I firstly dealt with type ③ fractures, I wanted to express them as the
results of the operations of m

'

m and n−1
n , where m is no necessary a prime, but m and

m' and n are all integers.
Since I knew that, based on Lemma 5.4, n−1n is absolutely the lowest form, I wanted

to find a way to ensure that the m
'

m is also the lowest form.
Firstly, I thought that it might involve some processes about Congruence theorem.
If

I just needed to prove that there exists a pair ofm' and m, which (rn' ,rn) ≠ (0,0) and
n = 1,2,3,⋯.
But this method is still quite tough. Even worse, how should I ensure that m

'

m is in the
range of [12,1](only

1
2 =

1
2 and

1
1,
2
2 = 1)?

Emmmm, this idea isn’t suitable, maybe I should find another one.
I then re-considered the goal we want to achieve: m

'

m is the lowest form, meaning
thatm' and m are co-prime.
Co-prime? And m is greater thanm'? So what about making m be a prime: in this
way,m' and m will definitely be co-prime!
Yeah! That’s a brilliant strategy! But could we ensure that m

'

m is in the range of
[12,1](only

1
2 =

1
2 and

1
1,
2
2 = 1)?

Well, it is hard for us to know the values of primes when they are really large, but we
know the values of primes when they are smaller: in this way, by making m as
smaller as possible, we can successfully find out a m

'

m satisfying the condition.

Method 1 Find General Forms, Use General Forms, Find More General Forms
I firstly wanted to express some of the numbers in S in general form, and then use
those numbers expressed in general form to derive more terms.
In graph 5.1, the numbers in the leftmost column can be expressed as:

2an−1 + an−2
3an−1 + an−2

where an is the numerator of the nth number in the leftmost column.
Similarly, we can find out the corresponding expression of other numbers in graph
and can then be used to find other numbers.
But, obviously, this method is still too complex so I eventually gave up.

m' m
mod 2 r1' r1
mod 3 r2' r2
mod 5 r3' r3
⋮ ⋮ ⋮
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3.
Some Auxiliary Results

Theory 6.1 A circle is essentially a polygon with infinite edges.

Lemma 6.2 The points which are the mid-points of the sides of equilateral triangle,
calledM1,M2 andM3, always on the of edges of the new polygon and acts as
mid-points during the process.
Proof.
During the process, every side is divided into three part and the middle part remains,
meaning that, no matter how short the edge is, the point which is the mid-point of
the side of equilateral triangle always on the of edges of the new polygon and acts
as mid-points.

Theory 6.3 Given the locations of three points on a circle, we can then determine
that circle.
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Solution
Thankfully, the areas of P1 and P2 can be calculated by us step by step.
In order to simplify, we firstly make the edge of equilateral triangle be 1.

Transition
The

number of
removed
triangles

Length of two sides
of the removed

triangles
The angle between

the two sides

Total removed
area, calculating by

absinC
2

Length of new side,
calculating by
a2 + b2 −2abcosC

P0→ P1 3 ( 13 ,
1
3 ) 60° 3

12.
1
3.

P1→ P2 6 ( 19 ,
1
9 ) 120° 3

54.
3
9 .

P2→ P3 12 ( 127 ,
3
27 ) 150° 3

243. Who cares?

So, we proportionally expand the areas.
P0:

3
4 → 10

P1: (
3
4 - 3

12)→
20
3

P2: (
3
4 - 3

12 -
3
54)→

160
27

Now let’s focus on the next two questions.
Understandably, during the process, the edges will double again and again,
resulting in a circle, which we can check through Theory 6.1.
But why is it a circle?

We put P0, P1 and P∞ at the same picture and add three axes of symmetry, just like
above.
Actually, these three axes of symmetry always exist because the operations that we
do(cutting edges) is always symmetric.
Thus, the final shape shall be a circle.

But how to find the area of the circle?
Well, at first I thought that the removed areas will be a geometric series, since 3

12,
3
54,

3
243 does form a geometric series. But, obviously, it’s hard to prove whether it is right
or not.
Then I wanted to find the pattern of the change in the circumference, since once we
fix the perimeter of a circle, its area is also fixed. But also, it is hard to achieve this
goal because this involved too much calculation.
What else could be used to calculate the area of a circle? Well, its radius! Based on
Lemma 6.2 and Theory 6.3, we can fix the circle thanks to three pointsM1,M2 and



济南外国语学校数学月报编写组

M3 and its radius, which is just the radius of the inscribed circle of the equilateral
triangle, 1

2 3
.

We proportionally expand the area.
P0:

3
4 → 10

P∞:
π
12→

10π
3 3

In conclusion, the area of the first polygon is 203 and that of the second one is 16027 ,
and the final one, which is a circle, 10π

3 3
.
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