PURE MATHEMATICS

Algebraic Series:

 $\sum_{r=1}^{n} r^3 =$

Maclaurin's Series:

general expression for Taylor Expansion:

 $e^{x} =$ ln(1+x) = sin x = cos x = $tan^{-1} x =$ sinh x = cosh x = $tanh^{-1} x =$ $(1+x)^{n} =$

Hyperbolic Function:

sinhx = coshx = $sinh^{-1}x =$ $cosh^{-1}x =$ $tanh^{-1}x =$ 1 =

Trigonometric Function:

 $\sin 3A \equiv$ $\cos 3A \equiv$ $\sin P + \sin Q \equiv$ $\sin P - \sin Q \equiv$ $\cos P + \cos Q \equiv$ $\cos P - \cos Q \equiv$ If $t = \tan \frac{1}{2}x$ then: $\sin x =$ $\cos x =$

Area of Sector:

for a circle with angle θ and radius r:	A =
in polar form:	A =
in parametric form: Length of Sector:	A =
for a circle with angle θ and radius r:	C =
in Cartesian form:	C =
in polar form:	C =
in parametric form: Area of Surface(if rotate with > in Cartesian form:	C = (-axis): S =
in polar form: Matrix: using Characteristic Equation to find t	S = the inverse of M:

Faction:

given $y = \frac{f(x)}{g(x)}$, judge the range of y:

 $\int f(x) dx$

Calculus:

f(x) $\frac{1}{\sqrt{a^2 - x^2}}$ $\frac{1}{\sqrt{x^2 - a^2}}$ $\frac{1}{\sqrt{a^2 + x^2}}$ $\frac{1}{\sqrt{a^2 + x^2}}$ $\frac{1}{x^2 + a^2}$ $\frac{1}{x^2 - a^2}$ $\frac{1}{a^2 - x^2}$ sec x tan x $-\operatorname{cosec} x \cot x$ $-\operatorname{cosec}^2 x$ $\operatorname{sec} x$ $\operatorname{cosec} x$

Vectors about Distance:

(1) the distance from a point P to line, with unit vector **u**, passing through A:

(2) the distance between lines $\mathbf{r}=\mathbf{a}_1+t\mathbf{b}_1$, $\mathbf{r}=\mathbf{a}_2+s\mathbf{b}_2$:

(3) the distance between a point P and a plane passing through R and Q, and PR is perpendicular to the plane:

(4) the line intersection of two planes, with normal vector $\mathbf{n_1}$ and $\mathbf{n_2}$:

(5) determine whether a line is on the plane, parallel to the plane, or intersect with plane:

(6) find the expression of the intersection of two planes

Complex Number Locus:

given that Re(B) > Re(A): when $arg\left(\frac{z-b}{z-a}\right)$ is positive acute: when $arg\left(\frac{z-b}{z-a}\right)$ is positive obtuse: when $arg\left(\frac{z-b}{z-a}\right)$ is negative acute: when $arg\left(\frac{z-b}{z-a}\right)$ is negative obtuse:

Differential Equation:

solve $\frac{dy}{dx} + P(x)y = Q(x)$:

when solving $a \frac{d^2y}{dx^2} + b \frac{dy}{dx} + cy = 0$, $ax^2 + bx + c = 0$ has two complex roots:

FIGHT FOR CAMBRIDGE! MECHANICS

Motion:

change in total energy =

sum of all forces, if not equilibrium =

Momentum:

if there are two objects, with mass m_1 and m_2 . initially, their velocity are u_1 and u_2 , and after collision, their velocity are v_1 and v_2 :

conservation in momentum:

coefficient of restitution:

Centre of Mass:

Triangular lamina: along median from vertex

Solid hemisphere of radius r: from centre

Hemispherical shell of radius r: from centre

Circular arc of radius r and angle 2α . from centre

Circular sector of radius r and angle 2α . from centre

Solid cone or pyramid of height h: from vertex

Elastic Related:

I is the original length, λ is the modulus of elasticity, x is the change in length:

T =

EPE =

change in EPE =

Circular Motion:

for a object with mass m, its circular motion locus has radius r, with radian velocity $\boldsymbol{\omega}$ and velocity \boldsymbol{v} :

ω = a =

STATISTICS

Summary Statistics:

for n different x:

Var(x) = Binomial Distribution B(n,p):

μ =

 $\sigma^2 =$

Geometry Distribution Geo(p):

μ =

 $\sigma^2 =$

Poisson Distribution $Po(\lambda)$:

 $p_r =$ $\mu =$

$$\sigma^2 =$$

Continuous Random Variables:

using integration to express:

E(x) =

Var(x) =

Sampling and Testing, Unbiased Estimation:

there is a sample, consisting of n different x from population:

μ =

 $s^2 =$

Sampling and Testing, Central Limit Theorem:

there are n different samples, and each of them has a mean $\bar{\boldsymbol{x}}$:

$$E(\bar{x}) =$$

 $Var(\bar{x}) =$

Probability Density and Cumulative Distribution Function: if PDF = f(x):

CDF =

Probability Generating Function:

using P(r) to represent the probability when X=r:

in general form: $G_X(t) =$ X~Geo(p): $G_X(t) =$ $G_X(t) =$ X~B(n,p): $G_X(t) =$ $X \sim Po(\lambda)$: using $G_X(t)$ to express: E(x) =Var(x) = $G_{X+Y}(t) =$ $G_{aX+b}(t) =$