


PREFACE
This month, we are going to talk about one famous conclusion relating
to chromatic number. If you haven’t heard this terminology yet, don’t
worry! Just read through my thesis, known as Proof of the tightness of a
lower bound on the chromatic number of a graph, you’ll then have a
better understanding towards the application of linear algebra!

If you have other brilliant questions or knowledge willing to learn, email
to anmiciuangray@163.com for surprising rewards!



1. abstract

I confirm the tightness of a conjecture in Wocjan and Elphick (2013) [3] about a lower bound
of the chromatic number of a graph with the help of matrix analysis.

2. Introduction

In this note, � is a simple graph with�≥ 1 vertices, �� refers to its adjacency matrix, and
�(�) represents its chromatic number, which is the smallest number of colors needed to
color the vertices so that no two adjacency vertices share the same color.

Since �� is a real symmetric matrix, according to Spectral Theorem, it has real eigenvalues
and its eigenvectors can be chosen to be orthonormal.

Definition 1.1 For a matrix with all real eigenvalues, we denote all its eigenvalues by �1, ...,
��, in a non-increasing order, with the first � eigenvalues being positive and last �
eigenvalues being negative(counting multiplicities). In such way, �+ and �− are defined as

�+ := �12 + �22 + ... + ��
2 ,

�− := ��−�+1
2 + ��−�+2

2 + ... + ��
2 .

Although Ando and Lin in [1] has proven that
�(�) ≥ 1 + max{ �

+

�−,
�−

�+ }, (1.1)
whether this inequality is tight seems not to be known. The purpose of this note is to provide
a brief answer for this question by showing that equality of (1.1) holds for certain kinds of
graphs.

Definition 1.2 For a n-partite graph �, its vertex set �can be partitioned into � pairwise
disjoint subsets �1, �2, ...,��(where �� ∩ �� = ∅ for � ≠ �) such that every edge
(�, �) ∈ � connects vertices from different subsets.
For a n-partite graph �, it is defined as a symmetric n-partite graph if and only if
∙ |�1| = |�2| = ... = |��| = �, �� = {���: 1 ≤ � ≤ �};
∙ the vertices of G can be numbered in a way that, if for some 1 ≤ �1, �2 ≤ �, 1 ≤ �1, �2 ≤ �,
�1 ≠ �2, ��1�1 is adjacent to ��2�2, then for all 1 ≤ �1, �2 ≤ �, �1 ≠ �2, ��1�1 is adjacent to ��2�2.

Definition 1.3 For a symmetric n-partite graph � with cardinality |��| = � for each subset, its
detail matrix� = M(�) is defined as, for 1 ≤ �1, �2 ≤ �, ��1�2 = 1 if and only if �1�1 is
adjacent to �2�2.

Theorem 1.1 The equality of (1.1) holds for � if � is a bipartite graph or a symmetric n-
partite graph with its detail matrix� = M(�) being positive semidefinte.

Definition 1.4 For a matrix � with all real eigenvalues, we denote all its eigenvalues by �1, ...,
��, in a non-increasing order, with the first � eigenvalues being positive and last �
eigenvalues being negative(counting multiplicities). In such way, we define its corresponding
positive-eigen matrix � = B(�) and negative-eigen matrix � = C(�) as

� := �=1
� ����� ��

� and C := �=�−�+1
� ����� ��

�,
where �� refers to the corresponding eigenvector for eigenvalue ��.



Theorem 1.2 The equality of (1.1) holds for � if and only if there exists a permutation matrix
� such that ����� satisfies the following conditions:

∙ ����� is partitioned into �(�) ×�(�) blocks ����� = [(�����)��]�, �=1
�(�) with

(�����)11, (�����)22, ..., (�����)�(�)�(�) being zero matrices;
∙ if the corresponding positive-eigen matrix � = B(�����) and negative-eigen matrix � =
C(�����) are expressed in the forms of

�
�
⋮

����⋯ ,

where �, �, ... are suitably partitioned matrices, then the modules of the ��ℎ column of �,
�, ... are all the same for any possible �;
∙ if � and � are partitioned into �(�) × �(�) blocks as the way ����� does, then all the
elements of the non-diagonal blocks of � is the fixed negative multiple of the corresponding
elements of the non-diagonal blocks of �.

3. Main result

Lemma 2.1 For a bipartite graph �, if the vertices of � is numbered in a way such that

�� = 0 �
�� 0

, where � is a matrix, then if �� has an eigenvalue �, it will also have an

eigenvalue −�.

Proof.
By singular value decomposition, � = 푈���. In such way, ��� = 푈���푈�, ��� =
������.

Since ��
2 = ��� 0

0 ���
, if �� represents the ��ℎ column of푈, �� represents the ��ℎ column

of�, �� represents the corresponding ��ℎ diagonal element of ���, then

��
2
��
��

= ��
��
��

.

This implies,

��
��
��

= ��
��
��

, ��
��
−��

= − ��
��
−��

,

so the eigenvalues of adjacency matrix �� appear in pairs (�, −�). If �� has an eigenvalue
�, it will also have an eigenvalue −�.

Lemma 2.2 For a symmetric n-partite graph �, if the vertices of � is numbered in a way
such that

�� =

0 �� ⋯�
� 0 � ⋯�
�� 0 ⋯�
⋮ ⋮ ⋮ ⋱ ⋮
��� ⋯ 0

,

where� = M(��) is the detail matrix of ��, then the eigenvalues of �� satisfies �+

�− = � − 1

if� is positive semidefinte.



Proof. Assume �� is the ��ℎ eigenvector of�, and �� is the corresponding ��ℎ eigenvalue
of�, then

0 �� ⋯�
� 0 � ⋯�
�� 0 ⋯�
⋮ ⋮ ⋮ ⋱ ⋮
��� ⋯ 0

��
��
��
⋮
��

= (� − 1)��

��
��
��
⋮
��

,

0 �� ⋯�
� 0 � ⋯�
�� 0 ⋯�
⋮ ⋮ ⋮ ⋱ ⋮
��� ⋯ 0

��
−��
0
⋮
0

= −��

��
−��
0
⋮
0

,

0 �� ⋯�
� 0 � ⋯�
�� 0 ⋯�
⋮ ⋮ ⋮ ⋱ ⋮
��� ⋯ 0

��
0
−��
⋮
0

= −��

��
0
−��
⋮
0

, ...,

0 �� ⋯�
� 0 � ⋯�
�� 0 ⋯�
⋮ ⋮ ⋮ ⋱ ⋮
��� ⋯ 0

��
0
0
⋮
−��

= −��

��
0
0
⋮

−��
If� is positive semidefinite, then �� is non-negative for all �, which implies,

�+

�− = �� > 0

((� − 1)��)
2

(−��)
2+(−��)

2+ ... + (−��)
2� = � − 1.

Proof of Theorem 1.1 For any graph �, when we re-number its vertices, the corresponding
adjacency matrix will shift from �� to �����, where � is a permutation matrix.
Since �� and ����� are similar, their eigenvalues are the same. Thus, if certain
relationship for the eigenvalues of ����� holds, then the same relationship will also hold
for the eigenvalues of ��.

If � is a bipartite graph, then according to Lemma 2.1, the eigenvalues of �����

appear in pairs (�, −�). This implies, for ��,
�+

�− = �� > 0

(��)
2

(−��)
2� = 1, �(�) = 1 + max{ �

+

�−,
�−

�+ }.

If � is a symmetric n-partite graph with its detail matrix� = M(�) being positive
semidefinte, then according to Lemma 2.2, �

+

�− = � − 1 for �����. This implies, for ��,

�(�) = 1 + max{ �
+

�−,
�−

�+ }.

To conclude, the inequality of (1.1) is tight if � is a bipartite graph or a symmetric n-
partite graph with its detail matrix� = M(�) being positive semidefinte.

Lemma 2.3 For a real positive semidefinite matrix� = [���]�,�=1
� =

�
�
⋮

����⋯ , where

�, �, ... are suitably partitioned matrices, it satisfies
� 2 ≤ � �=1

� ���
2� (2.1)

and equality holds if and only if the modules of the ��ℎ column of �, �, ... are all the same for
any possible �.

Proof. The inequality in (2.1) can be proven by [1, Lemma 2.1] and [2, p. 209].
The only part that consists of inequality in [1, Lemma 2.1] is that, since � = [���]�,�=1

� is real

positive semidefinite, so is
������

�
��
� ���

, which satisfies

���
2 ≤ ��� ��� ≤

���
2+ ���

2

2
. (2.2)

Thus, in order to prove our desired argument, we need to find the condition that holds the
equality of (2.2).



Let
������

�
��
� ���

=
�
�

���� , where � and � are suitably partitioned matrices, so

��� = ���,��� = ���,���=���.

Let� = [���]�,�=1,1
�,� , � = [���]�,�=1,1

�,� , then

[���]�ℎ = �=1
� ����ℎ�� , [���]�ℎ = �=1

� ����ℎ�� , [���]�ℎ = �=1
� ����ℎ�� .

We first focus on the first half of (2.2).
���

2 ≤ ��� ��� ,

�=1
�

�=1
�

ℎ=1
� (����ℎ�)2��� ≤ �=1

�
�=1
�

ℎ=1
� (����ℎ�)2��� �=1

�
�=1
�

ℎ=1
� (����ℎ�)2��� ,

�=1
� ( �=1

� (���)2� ℎ=1
� (�ℎ�)2� )� ≤ �=1

� ( �=1
� (���)2� )2� �=1

� ( ℎ=1
� (�ℎ�)2� )2� .

This implies, with �� := �=1
� (���)2� ,�� := ℎ=1

� (�ℎ�)2� ,

�=1
� ����� ≤ �=1

� ��
2� �=1

� ��
2� . (2.3)

Since the equality of (2.3) holds if and only if �� = λ�� , then the first half equality of (2.2)
holds if and only if �� = λ��.

We then focus on the second half of (2.1).

��� ��� ≤
���

2+ ���
2

2
. (2.4)

Since the equality of (2.4) holds if and only if ��� = ��� , then the second half equality of
(2.2) holds if and only if ��� = ��� .
That implies,

�=1
�

�=1
�

ℎ=1
� (����ℎ�)2��� = �=1

�
�=1
�

ℎ=1
� (����ℎ�)2��� ,

�=1
� ��

2� = �=1
� ��

2� .
Then we combine these two auxiliary results, which implies,

�=1
� ��

2� = �=1
� �2��

2� ,
� = 1.

Therefore, the modules of the �th column of � and � are all the same for any possible �.
Similar arguments hold for any � and �, so for a real positive semidefinite matrix � =

[���]�,�=1
� =

�
�
⋮

����⋯ , the equality of (2.1) holds if and only if the modules of the �th

column of �, �, ... are all the same for any possible �.

Lemma 2.4 Let� = [���]�,�=1
� and � = [���]�,�=1

� be two real positive semidefinite matrices
conformally partitioned. If the diagonal blocks of� and � coincide and�� = 0, then

� 2 ≤ (r− 1) � 2 (2.5)
and the equality holds if and only if all the elements of the non-diagonal blocks of� is the
fixed negative multiple of the corresponding elements of the non-diagonal blocks of �.

Proof. The inequality in (2.5) can be proven by [1, Theorem 2.2].
The only part that consists of inequality in [1, Theorem 2.2] is that, for real positive
semidefinite matrices X and Y,

�=1
� ���

2� = − �≠� tr(���
����)� ≤ �≠� ��� ���� ≤ �≠� ���

2� �≠� ��� 2� .
(2.6)

Thus, in order to prove our desired argument, we need to find the condition that holds the
equality of (2.6).



Let��� = [[���]푎�]푎,�=1,1
���,��� , ��� = [[���]푎�]푎,�=1,1

���,��� , then

− �≠� 푎=1
���

�=1
��� [���]푎�[���]푎���� ≤ �≠� 푎=1

���
�=1
��� [���]푎�

2��� �≠� 푎=1
���

�=1
��� [���]푎�

2��� .
(2.7)

Since the equality of (2.7) holds if and only if [���]푎� = �[���]푎� where � ≠ �, 1 ≤ 푎 ≤ ���, 1
≤ � ≤ ���, � ≤ 0, the equality of (2.5) holds if and only if all the elements of the non-
diagonal blocks of� is the fixed negative multiple of the corresponding elements of the
non-diagonal blocks of �.

Proof of Theorem 1.2 we first prove the necessity of Theorem 1.2.
According to Lemma 2.3, 2.4 and [1, Proof of Conjecture 1.1], for any graph �, after its
vertices being re-numbered and corresponding positive-eigen matrix � = B(�����) and
negative-eigen matrix � = C(�����) being suitably partitioned, if the aforementioned three
conditions hold, then the equalities of (2.1) and (2.5) will hold, resulting in that the equality of
(1.1) will hold.

We then prove the sufficiency of Theorem 1.2.
According to Lemma 2.3, 2.4 and [1, Proof of Conjecture 1.1], for any graph �, if the equality
of (1.1) holds, then the equalities of (2.1) and (2.5) must hold. In such way, after the vertices
of � being re-numbered and corresponding positive-eigen matrix � = B(�����) and
negative-eigen matrix � = C(�����) being suitably partitioned, the aforementioned three
conditions must hold.

To conclude, the equality of (1.1) holds for � if and only if there exists a permutation
matrix P such that PAGPT satisfies the following conditions:
∙ ����� is partitioned into �(�) × �(�) blocks ����� = [(�����)��]�, �=1

�(�) with

(�����)11, (�����)22, ..., (�����)�(�)�(�) being zero matrices;
∙ if the corresponding positive-eigen matrix � = B(�����) and negative-eigen matrix � =
C(�����) are expressed in the forms of

�
�
⋮

����⋯ ,

where �, �, ... are suitably partitioned matrices, then the modules of the ��ℎ column of �,
�, ... are all the same for any possible �;
∙ if � and � are partitioned into �(�) ×�(�) blocks as the way ����� does, then all the
elements of the non-diagonal blocks of � is the fixed negative multiple of the corresponding
elements of the non-diagonal blocks of �.
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